1,362 research outputs found

    Effects of Noise in a Cortical Neural Model

    Full text link
    Recently Segev et al. (Phys. Rev. E 64,2001, Phys.Rev.Let. 88, 2002) made long-term observations of spontaneous activity of in-vitro cortical networks, which differ from predictions of current models in many features. In this paper we generalize the EI cortical model introduced in a previous paper (S.Scarpetta et al. Neural Comput. 14, 2002), including intrinsic white noise and analyzing effects of noise on the spontaneous activity of the nonlinear system, in order to account for the experimental results of Segev et al.. Analytically we can distinguish different regimes of activity, depending from the model parameters. Using analytical results as a guide line, we perform simulations of the nonlinear stochastic model in two different regimes, B and C. The Power Spectrum Density (PSD) of the activity and the Inter-Event-Interval (IEI) distributions are computed, and compared with experimental results. In regime B the network shows stochastic resonance phenomena and noise induces aperiodic collective synchronous oscillations that mimic experimental observations at 0.5 mM Ca concentration. In regime C the model shows spontaneous synchronous periodic activity that mimic activity observed at 1 mM Ca concentration and the PSD shows two peaks at the 1st and 2nd harmonics in agreement with experiments at 1 mM Ca. Moreover (due to intrinsic noise and nonlinear activation function effects) the PSD shows a broad band peak at low frequency. This feature, observed experimentally, does not find explanation in the previous models. Besides we identify parametric changes (namely increase of noise or decreasing of excitatory connections) that reproduces the fading of periodicity found experimentally at long times, and we identify a way to discriminate between those two possible effects measuring experimentally the low frequency PSD.Comment: 25 pages, 10 figures, to appear in Phys. Rev.

    Complexity, Tunneling and Geometrical Symmetry

    Full text link
    It is demonstrated in the context of the simple one-dimensional example of a barrier in an infinite well, that highly complex behavior of the time evolution of a wave function is associated with the almost degeneracy of levels in the process of tunneling. Degenerate conditions are obtained by shifting the position of the barrier. The complexity strength depends on the number of almost degenerate levels which depend on geometrical symmetry. The presence of complex behavior is studied to establish correlation with spectral degeneracy.Comment: 9 revtex pages, 6 Postscript figures (uuencoded

    Nature-Inspired Interconnects for Self-Assembled Large-Scale Network-on-Chip Designs

    Get PDF
    Future nano-scale electronics built up from an Avogadro number of components needs efficient, highly scalable, and robust means of communication in order to be competitive with traditional silicon approaches. In recent years, the Networks-on-Chip (NoC) paradigm emerged as a promising solution to interconnect challenges in silicon-based electronics. Current NoC architectures are either highly regular or fully customized, both of which represent implausible assumptions for emerging bottom-up self-assembled molecular electronics that are generally assumed to have a high degree of irregularity and imperfection. Here, we pragmatically and experimentally investigate important design trade-offs and properties of an irregular, abstract, yet physically plausible 3D small-world interconnect fabric that is inspired by modern network-on-chip paradigms. We vary the framework's key parameters, such as the connectivity, the number of switch nodes, the distribution of long- versus short-range connections, and measure the network's relevant communication characteristics. We further explore the robustness against link failures and the ability and efficiency to solve a simple toy problem, the synchronization task. The results confirm that (1) computation in irregular assemblies is a promising and disruptive computing paradigm for self-assembled nano-scale electronics and (2) that 3D small-world interconnect fabrics with a power-law decaying distribution of shortcut lengths are physically plausible and have major advantages over local 2D and 3D regular topologies

    Inverse eigenvalue problem for discrete three-diagonal Sturm-Liouville operator and the continuum limit

    Full text link
    In present article the self-contained derivation of eigenvalue inverse problem results is given by using a discrete approximation of the Schroedinger operator on a bounded interval as a finite three-diagonal symmetric Jacobi matrix. This derivation is more correct in comparison with previous works which used only single-diagonal matrix. It is demonstrated that inverse problem procedure is nothing else than well known Gram-Schmidt orthonormalization in Euclidean space for special vectors numbered by the space coordinate index. All the results of usual inverse problem with continuous coordinate are reobtained by employing a limiting procedure, including the Goursat problem -- equation in partial derivatives for the solutions of the inversion integral equation.Comment: 19 pages There were made some additions (and reformulations) to the text making the derivation of the results more precise and understandabl

    Ethnic differences in bowel cancer awareness: findings from a pharmacy-based community survey

    Get PDF

    Small-Energy Analysis for the Selfadjoint Matrix Schroedinger Operator on the Half Line

    Full text link
    The matrix Schroedinger equation with a selfadjoint matrix potential is considered on the half line with the most general selfadjoint boundary condition at the origin. When the matrix potential is integrable and has a first moment, it is shown that the corresponding scattering matrix is continuous at zero energy. An explicit formula is provided for the scattering matrix at zero energy. The small-energy asymptotics are established also for the corresponding Jost matrix, its inverse, and various other quantities relevant to the corresponding direct and inverse scattering problems.Comment: This published version has been edited to improve the presentation of the result

    Solution of the Fokker-Planck equation with a logarithmic potential and mixed eigenvalue spectrum

    Full text link
    Motivated by a problem in climate dynamics, we investigate the solution of a Bessel-like process with negative constant drift, described by a Fokker-Planck equation with a potential V(x) = - [b \ln(x) + a\, x], for b>0 and a<0. The problem belongs to a family of Fokker-Planck equations with logarithmic potentials closely related to the Bessel process, that has been extensively studied for its applications in physics, biology and finance. The Bessel-like process we consider can be solved by seeking solutions through an expansion into a complete set of eigenfunctions. The associated imaginary-time Schroedinger equation exhibits a mix of discrete and continuous eigenvalue spectra, corresponding to the quantum Coulomb potential describing the bound states of the hydrogen atom. We present a technique to evaluate the normalization factor of the continuous spectrum of eigenfunctions that relies solely upon their asymptotic behavior. We demonstrate the technique by solving the Brownian motion problem and the Bessel process both with a negative constant drift. We conclude with a comparison with other analytical methods and with numerical solutions.Comment: 21 pages, 8 figure

    Primordial pairing and binding of superheavy charge particles in the early Universe

    Full text link
    Primordial superheavy particles, considered as the source of Ultra High Energy Cosmic Rays (UHECR) and produced in local processes in the early Universe, should bear some strictly or approximately conserved charge to be sufficiently stable to survive to the present time. Charge conservation makes them to be produced in pairs, and the estimated separation of particle and antiparticle in such pair is shown to be in some cases much smaller than the average separation determined by the averaged number density of considered particles. If the new U(1) charge is the source of a long range field similar to electromagnetic field, the particle and antiparticle, possessing that charge, can form primordial bound system with annihilation timescale, which can satisfy the conditions, assumed for this type of UHECR sources. These conditions severely constrain the possible properties of considered particles.Comment: Latex, 4 pages. The final version to appear in Pis'ma ZhETF (the conditions for the primordial binding are specified, some refs added

    Reconstruction of the optical potential from scattering data

    Full text link
    We propose a method for reconstruction of the optical potential from scattering data. The algorithm is a two-step procedure. In the first step the real part of the potential is determined analytically via solution of the Marchenko equation. At this point we use a diagonal Pad\'{e} approximant of the corresponding unitary SS-matrix. In the second step the imaginary part of the potential is determined via the phase equation of the variable phase approach. We assume that the real and the imaginary parts of the optical potential are proportional. We use the phase equation to calculate the proportionality coefficient. A numerical algorithm is developed for a single and for coupled partial waves. The developed procedure is applied to analysis of 1S0^{1}S_{0} NNNN, 3SD1^{3}SD_{1} NNNN, P31P31 πN\pi^{-} N and S01S01 K+NK^{+}N data.Comment: 26 pages, 8 figures, results of nucl-th/0410092 are refined, some new results are presente

    Late pleistocene sedimentation history of the Shirshov Ridge, Bering Sea

    Get PDF
    The analysis of the lithology, grain-size distribution, clay minerals, and geochemistry of Upper Pleistocene sediments from the submarine Shirshov Ridge (Bering Sea) showed that the main source area was the Yukon–Tanana terrane of Central Alaska. The sedimentary materials were transported by the Yukon River through Beringia up to the shelf break, where they were entrained by a strong northwestward-flowing sea current. The lithological data revealed several pulses of ice-rafted debris deposition, roughly synchronous with Heinrich events, and periods of weaker bottom-current intensity. Based on the geochemical results, we distinguished intervals of an increase in paleoproductivity and extension of the oxygen minimum zone. The results suggest that there were three stages of deposition driven by glacioeustatic sea-level fluctuations and glacial cycles in Alaska
    corecore